INTERNATIONAL TITANIUM ASSOCIATION

Specifications Book

Fourth Edition - 2005

About the Specifications Book

The Specifications Book is designed to assist people considering using titanium for a specific application, and will be most useful to those organizations that do not have extensive experience with titanium applications. The book contains a selection of commonly utilized titanium alloys, and will assist in the selection of possible alloy choices for most commercial applications.

Contributing Committee Representatives:

Al Donlevy	Specification Committee Chairman
Stacey Blicker	International Titanium Association
Cliff Bugle	Dynamet Incorporated
James Grauman	TIMET
Zhou Lian	Northwest Institute for Nonferrous Metal Research
Bob McHugh	Allvac
John Mountford	TICO Titanium Incorporated
Rick Porter	RTI International Metals, Inc.
Flavio Portello	Tibrasil Titanio Ltda.
Toshihiko Saiki	Toho Titanium
Ronald Schutz	RTI International Metals, Inc.
Albert Wilson	Howmet Corporation

UNALLOYED TITANIUM

Unalloyed titanium typically contains between 99%-99.5% titanium, with the balance being made up of iron and the interstitial impurity elements hydrogen, nitrogen, carbon, and oxygen. The microstructure of unalloyed titanium consists of grains of alpha phase, with the possibility of small amounts of beta phase. The "unalloyed" grades of titanium are generally less expensive, and are easier to fabricate than alloyed, and generally stronger grades of titanium.

ALPHA AND NEAR-ALPHA ALLOYS

Titanium alloys have a fully alpha structure only if they contain alpha stabilizers such as aluminum, tin, and oxygen. These elements also act as solid solution strengtheners. The typical all-alpha alloy is Ti-5Al-2.5Sn. Near-alpha alloys include Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo.

ALPHA-PLUS BETA ALLOYS

These alloys contain both alpha stabilizers and beta stabilizers. These alloys can be heat treated to develop a range of microstructures. The "lean" alpha-beta alloys are moderately heat treatable and weldable, while the "rich" alpha-beta alloys have greater hardenability, and thus can be through-hardened in thicker section by heat treatment, but are more difficult to weld. The most important "lean" alloy is Ti-6Al-4V. The "rich" alloys include Ti-6Al-6V-2Sn and Ti-6Al-2Sn-4Zr-6Mo.

BETA ALLOYS

Beta alloys contain a balance of beta stabilizers to alpha stabilizers, which is sufficiently high that a fully beta phase microstructure can be retained on cooling. Their generally high strength, high toughness, and improved formability, as compared with alpha-beta alloys, provides an attractive combination of properties. However, processing and material costs are often quite high. Ti-3Al-8V-6Cr-4Zr-4Mo is an example of a commonly utilized beta alloy.

Table of Contents

Common Name	UNS Number	Page Number
CP Grade 1	R50250	5
Titanium Grade 1		
CP Grade 11	R52250	6
Titanium Grade 1 with 0.18 Palladium		
CP Grade 17	R52252	7
Titanium Grade 1 with 0.06 Palladium		
CP Grade 27		8
Titanium Grade 1 + 0.1% Ruthenium		
CP Grade 2	R50400	9
Titanium Grade 2		
CP Grade 7	R52400	10
Titanium Grade 2 with 0.18 Palladium		
CP Grade 16	R52402	11
Titanium Grade 2 with 0.06 Palladium		
CP Grade 26	R52404	12
Titanium Grade 26		
CP Grade 3	R50550	13
Titanium Grade 3		
CP Grade 4	R50700	14
Titanium Grade 4		
CP Grade 12	R53400	15
Ti 230		16
Ti-3Al-2.5V	R56320	17
Titanium Grade 9		
TI-3Al-2.5V with Ruthenium	R56323	18
Titanium Grade 28		
Ti-5Al-2.5Sn	R54520	19
Titanium Grade 6		
Ti-5Al-2.5Sn ELI	R54521	20
	D 15 100	21
11-6Al-4V	R45400	21
Titanium Grade 5	D.C.(407	22
Ti-6Al-4V ELI	R56407	22
Titanium Grade 23	D56404	02
11-6AI-4V ELI with Ruthenium	K56404	23
Titanium Grade 29	D = < 700	24
11-0AI-/ND	K36/00	24
T: 641 6V 25n	D56620	25
TI 6.6.2	KJ0020	23
11-0-0-2		

Table of Contents

Ti-6Al-2Sn-4Zr-2Mo	R54620	26	
Ti-6-2-4-2			
Ti-6Al-2Sn-4Zr-6Mo	R56260	27	
Ti 6-2-4-6			
Ti-5Al-2Sn-2Zr-4Mo-4Cr	R52252	28	
Ti-7Al-4Mo	R56740	29	
Ti-7-4			
Ti-8Al-1Mo-1V	R54810	30	
Ti-8-1-1-1			
Ti-10V-2Fe-3Al	R56410	31	
Ti-10-2-3			
Ti-3Al-8V-6Cr-4Mo-4Zr	R58640	32	
3-8-6-4-4 (Beta C)			
Ti-13V-11Cr-3Al	R58010	33	
Ti-13-11-3			
TIMETAL 21S	R58210	34	
Ti-15Mo-3Nb-3Al2Si			
Ti 550		35	
Ti-6Al-2Sn-2Zr-2Mo-2Cr-Si	R56222	36	
<u>Ti-6-2-2-2-Si</u>			
Ti 834		37	
		20	
Ti-5Al-1Sn-1Zr-1V-0.8Mo		38	
TIMETAL 5111			
International Specifications		39	
Titanium Metal Terminology		42	
Resources		44	

Common Name:	CP Grade 1 Titanium Grade 1
UNS Number:	R50350
General Information:	Titanium Alloy Grade 1 is "unalloyed" titanium offering optimum ductility and cold formability. The material has high impact toughness and is readily weldable. The material is capable of deep drawing, and used for plate, frame, and tube heat exchangers, and also is used as plate for explosive bonding for clad plate. The material is castable and is sometimes utilized "as cast" in dental applications. The alloy is available as castings, wire, welded tube, bar, plate, sheet, forgings, and billet.

Common Specifications:	Specification:	Product Form:
	ASTM B265 (Grade 1)	Strip, Sheet, and Plate
	ASTM B338 (Grade 1)	Seamless Welded Tubes
	ASTM B348 (Grade 1)	Bar and Billet
	ASTM B363 (Grade 1)	Fittings
	ASTM B367 (Grade 1)	Castings
	ASTM B381 (Grade 1)	Forgings
	ASTM B861 (Grade 1)	Seamless Pipe
	ASTM B862 (Grade 1)	Welded Pipe
	ASTM F67 (Grade 1)	Unalloyed Titanium for Surgical Implants
	AWS A5.16 (ERTi-1)	Weld Wire
	ISO 5832-2 (Grade 1)	Unalloyed Titanium for Surgical Implants

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Η	Fe	0	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.1	0.015	0.20	0.18	0.1	0.4	balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	35 (240)	20 (138)	24	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	50(345)	32 (221)	37	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 11	Ti - Palladium		
	CP Grade 1 with Palladium			
UNS Number:	R52252			
General Information:	Titanium Grade 11 is the equivilent of Grade 1 but with a palladium addition which imparts a significant improvement in resistance to gen and localized crevice corrosion in a wide range of reducing acid environments, including chlorides, and where low pH and high temperatures above 180° F (83° C) to 500° F (260° C) are prevalent. alloy is available as castings, wire, bar, plate, sheet, forgings, pipe, tu and billet.			
Common Specifications:	Specification:	Product Form:		
	ASME SB-265	Sheet, Strip, and Plate		
	ASME SB-337	Pipe, Seamless and Welded		
	ASME SB-338	Tube, Seamless and Welded		
	ASME SB-348	Bar and Billet		
	ASTM B265 (Grade 11)	Strip, Sheet and Plate		
	ACTMD249 (C = 1, 11)	D 1 D'11.4		

cincations.	Specification	1 i ouuce 1 ormit
	ASME SB-265	Sheet, Strip, and Plate
	ASME SB-337	Pipe, Seamless and Welded
	ASME SB-338	Tube, Seamless and Welded
	ASME SB-348	Bar and Billet
	ASTM B265 (Grade 11)	Strip, Sheet and Plate
	ASTM B348 (Grade 11)	Bar and Billet
	ASTM B367 (Grade 11)	Castings.
	ASTM B861 (Grade 11) *	Seamless Pipe
	ASTM B862 (Grade 11) *	Welded Pipe
	AWS A5.16 (ERTi-11)	Weld Wire
	AWS A5.16 (ERTi-17)	Weld Wire
	* Replacing ASTM B337	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Pd	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.20	0.18	0.12-0.25	0.1	0.4	Balance

Note: Chemical requirements are not consistent between specifications. Check referenced specifications.

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	35 (240)	20 (138)	24	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	50 (345)	32 (221)	37	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 17	Ti – 0.06 Pd
	Titanium Grade 17	CP Grade 1 w/ Lower Palladium
UNS Number:	R52252	
General Information:	Titanium Alloy Grade 17 is "a and cold formability, with pro Grade 17 is like Grade 11 but readily weldable. This materi oxidizing and mildly reducing may be utilized in cast valves castings, wire, welded tube, p billet.	alloyed" titanium offering optimum ductility perties similar to Grade 1 and Grade 11. with lower palladium. The material is al is very corrosion resistant in highly genvironments. The material is castable and and fittings. The alloy is available as ipe, plate, sheet, strip, forgings, bar, and
Common Specifications:	Specification:	Product Form:
	ASTM B265 (Grade 17)	Strip, Sheet, and Plate

ASTM B348 (Grade 17) ASTM B367 (Grade 17)

ASTM B381 (Grade 17)

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Pd	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.20	0.18	0.04-0.08	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	35 (240)	25 (170)	24	30

Bar and Billet

Castings

Forgings

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	50 (345)	34 (221)	37	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 27	Ti 0.1 Ru
	Titanium Grade 1 + 0.1%Ruthenium	TIRU-27™

UNS Number:

General Information: Titanium Grade 27 has excellent weldability, formability with mechanical properties equivalent to those of Grade 1 titanium. Titanium Grade 27 is alloyed with 0.1 ruthenium to provide expanded resistance essentially (equivalent to Ti Grades 11, 17) at lower cost to acidic general and crevice corrosion in mildly reducing at pH's <1 and temps >200°C. The alloy is available as strip, sheet, plate, tubing, forgings, bar, and billet.

Common Specifications:	Specification:	Product Form:	
	ASTM B265	Strip, Sheet, and Plate	
	ASTM B338	Tubing	
	ASTM B348	Bar and Billet	
	ASTM B363	Fittings	
	ASTM B381	Forgings	
	ASTM B861	Seamless Pipe	
	ASTM B862	Welded Pipe	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Pd	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.20	0.18	0.08-0.14	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	35 (240)	25 (170)	24	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	56 (386)	37 (255)	36	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 2 Titanium Grade 2		
UNS Number:	R50400		
General Information:	Titanium Alloy Grade 2 is "unalloyed" titanium offering an excellent balance of strength and ductility. The material has good toughness and is readily weldable. This material is very corrosion resistant in highly oxidizing and mildly reducing environments. The material is castable and is often utilized in cast valves and fittings. In plate form, the alloy is also used explosively boned to make clad plate. The alloy is available as castings, wire, welded tube, pipe, plate, sheet, strip, forgings, bar, and billet.		
Common Specifications:	Specification:	Product Form:	
-	AMS 4902	Strip, Sheet, and Plate	
	AMS 4941	Welded Tubing	
	AMS 4942	Seamless Tubing	
	AMS 4951	Wire, Welding	
	ASME SB265	Sheet, Strip, and Plate	
	ASME SB348	Bar and Billet	
	ASME SB367	Casting	
	ASME SB381	Forgings	
	ASTM B265 (Grade 2)	Strip, Sheet, and Plate	
	ASTM B338	Tube, Seamless and Welded	
	ASTM B348 (Grade 2)	Bar and Billet	
	ASTM B363	Fittings	
	ASTM B367 (Grade 2)	Castings	
	ASTM B381	Forgings	
	ASTM B861	Seamless Pipe	
	ASTM B862	Welded Pipe	
	ASTM B863	Wire	
	ASTM B831	Forgings	
	ASTM F67 (Grade 2)	Unalloyed Titanium for Surgical Implants	
	AWS A5.16 ERTi-2	Weld Wire	
	ISO 5832-2 (Grade 2)	Unalloyed Titanium for Surgical Implants	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.3	0.25	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	50 (345)	40 (275)	20	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	70 (483)	51 (352)	28	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 7 CP Grade 2 with Palladium	Ti-0.15PD Titanium Grade 7
UNS Number:	R52400	
General Information:	Titanium Alloy Grade 7 with 0.1% p improved resistance to general and 1 reducing acid environments, includin temperatures above 180°F (83°C) to available as castings, wire, welded to billet.	balladium is similar to Grade 2, but with ocalized crevice corrosion in a wide range of ng chlorides, and where low pH and high 500°F (260°C) are prevalent. The alloy is ube, pipe, plate, sheet, strip, forgings, bar, and

Common Specifications:	Specification:	Product Form:
	ASME SB-265	Sheet, Strip, and Plate
	ASME SB-337	Pipe, Seamless and Welded
	ASME SB-338	Tube, Seamless and Welded
	ASME SB-348	Bar and Billet
	ASTM B265 (Grade 7)	Sheet, Strip, and Plate
	ASTM B348 (Grade 7)	Bar and Billet
	ASTM B367 (Grade 7)	Castings
	ASTM B861*	Seamless Pipe
	ASTM B862*	Welded Pipe
	AWS A5.16 (ERTi-7)	Weld Wire
	* Replacing ASTM B337	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Pd	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.30	0.25	0.12-0.25	0.1	0.4	Balance

Note: Chemical requirements are not consistent between specifications. Check referenced specifications. **Minimum Tensile Properties:**

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	50 (345)	40 (275)	20	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	70 (438)	51 (352)	28	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 16 CP Grade 2 with Lower Palladium	Ti 0.05% Pd Titanium Grade 16
UNS Number:	R52402	
General Information:	Titanium Alloy Grade 16 with lower palla Grade 2 and Grade 7, but has lower palla reduce the cost, without significant effect localized crevice corrosion. The alloy is welded tube, pipe, plate, sheet, strip, forg	adium (0.1Pd) is similar to dium. Lower palladium may on the resistance to general and available as castings, wire, ings, bar, and billet.

Specification:	Product Form:
ASME SB-265	Sheet, Strip, and Plate
ASME SB-338	Seamless and Welded Tube
ASTM B265 (Grade 16)	Sheet, Strip, and Plate
ASTM B348 (Grade 16)	Bars and Billets
ASTM B367 (Grade Ti-Pd 16)	Castings
AWS A5.16 ERTi-16	Weld Wire
	Specification:ASME SB-265ASME SB-338ASTM B265 (Grade 16)ASTM B348 (Grade 16)ASTM B367 (Grade Ti-Pd 16)AWS A5.16 ERTi-16

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Pd	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.30	0.25	0.04-0.08	0.4	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	50 (345)	40 (275)	20	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	70 (483)	51 (352)	28	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 26 Titanium Grade 26	Ti-0.1 Ru TIRU-26™
UNS Number:	R52404	
General Information:	Titanium Grade 26 with (0.1R) properties to those of Grade 2 to corrosion resistance to Grades acidic environments to pH's <1 as sheet, strip, plate, tubing, for	u) has equivalent (similar) mechanical titanium. Ti-Grade 26 offers equivalent 7 and 16 titanium, in mildly reducing and temps >200°C. The alloy is available rgins, bar, and billet.

Common Specifications:	Specification:	Product Form:	
	ASTM B265 (Grade 16)	Sheet, Strip, and Plate	_
	ASTM B338	Tubing	
	ASTM B348	Bar, Billet	
	ASTM B363	Fittings	
	ASTM B381	Forgings	_
	ASTM B861	Seamless Pipe	
	ASTM B862	Welded Pipe	
			_

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Ru	Residuals Each Max.	Residuals Max. Total	Ti
0.03	0.08	0.015	0.30	0.25	0.08-0.14	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	50 (345)	40 (275)	20	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	64 (441)	44 (303)	32	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 3 Titanium Grade 3
UNS Number:	R50550
General Information:	Titanium Alloy Grade 3 is "unalloyed" titanium offering improved strength, moderate ductility, and ASME Code design allowables. The material is readily weldable. This material is very corrosion resistant in highly oxidizing and mildly reducing environments. The material is castable and is often utilized in cast valves and fittings. The alloy is available as castings, wire, welded tube, pipe, plate, sheet, strip, forgings, bar, and billet.

Common Specifications:	Specification:	Product Form:
	AMS 4900	Sheet, Strip, and Plate
	ASME SB-265	Sheet, Strip, and Plate
	ASME SB-348	Bar and Billet
	ASTM 337	Seamless and Welded Pipe
	ASTM B265 (Grade 3)	Strip, Sheet, and Plate
	ASTM B348 (Grade 3)	Bars and Billets
	ASTM B367 (Grade 3)	Castings
	ASTM B381	Forgings
	ASTM B861	Seamless Pipe
	ASTM B862	Welded Pipe
	ASTM F67 (Grade 3)	Unalloyed Titanium for Surgical Implants
	AWS A5.16 (ERTi-3)	Weld Wire
	ISO 5832-3	Unalloyed Titanium for Surgical Implants

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	H	Fe	0	Residuals Each Max.	Residuals Max. Total	Ti
0.05	0.08	0.015	0.30	0.35	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	64 (450)	55 (380)	18	30

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	86 (593)	67 (462)	25	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	CP Grade 4 Titanium Grade 4
UNS Number:	R50700
General Information:	Titanium Alloy Grade 4 is "unalloyed" titanium offering improved strength, moderate ductility. The material is readily weldable. This material is very corrosion resistant in highly oxidizing and mildly reducing environments. The material is castable and is often utilized in cast valves and fittings. The alloy is available as castings, wire, plate, sheet, strip, forgings, bar, and billet. Used mostly in aerospace applications.

Specification:	Product Form:
AMS 4901	Sheet, Strip, and Plate
AMS 4921	Bars, wire, forgings, and rings
ASTM B265 (Grade 4)	Strip, Sheet, and Plate
ASTM B348 (Grade 4)	Bars and Billets
ASTM B367 (Grade 4)	Castings
ASTM B381	Forgings
ASTM F67 (Grade 4)	Unalloyed Titanium for Surgical Implants
ISO 5832-2 Grade 4	Unalloyed Titanium for Surgical Implants
MIL-T-9047 Ti-CP-70	Bars for forging
MIL-T-9046	
	Specification:AMS 4901AMS 4921ASTM B265 (Grade 4)ASTM B348 (Grade 4)ASTM B367 (Grade 4)ASTM B381ASTM F67 (Grade 4)ISO 5832-2 Grade 4MIL-T-9047 Ti-CP-70MIL-T-9046

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Residuals Each Max.	Residuals Max. Total	Ti
0.05	0.08	0.015	0.50	0.4	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	(80 (550)	70 (483)	15	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	86 (593)	75 (571)	20	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Titanium Grade 12 Ti-0.3Mo-0.8Ni	Ti-CODE 12 ^{тм}
UNS Number:	R53400	
General Information:	Titanium Alloy Grade 12 is lig improved strength at elevated t design allowables. The materia crevice corrosion resistance. T highly oxidizing and mildly rec as wire, plate, sheet, strip, forg	htly alloyed near-alpha alloy offering emperatures and optimum ASME Code al is readily weldable, and has superior This material is very corrosion resistant in ducing environments. The alloy is available ings, bar, and billet.
Common Specifications:	Specification: AMS 4902	Product Form:
	ASME B861 (Grade 12)*	Seamless Pipe
	ASME B862 (Grade 12)*	Welded Pipe
	ASME SB-381	Forgings
	ASME SB-348	Bars and Billets
	ASTM B265 (Grade 12)	Sheet, Strip, and Plate
	ASTM B338	
	ASTM B348 (Grade 12)	Bars and Billets
	ASTM B337 (Grade 12)	Welded and Seamless Pipe
	ASTM B381 (Grade 12)	Forgings
	ASTM B861	
	ASTM B862	
	AWS A5.16 (ERTi-12)	Weld Wire
	*replacing ASTM B337	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Mo	Ni	Residuals Each Max.	Residuals Max Total	Ti
0.03	0.08	0.015	0.30	0.25	0.2-0.4	0.6-0.9	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	70 (483)	50 (345)	18	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	88 (607)	67 (462)	22	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti–2.5Cu Ti 230
UNS Number:	None assigned
General Information:	Ti 230 combines the formability and weldability of unalloyed titanium with improved mechanical properties, particularly at elevated temperatures (up to $662^{\circ}F(350^{\circ}C)$). The alloy may be used in the annealed condition as sheet, forgings and extrusions; it is used both in the airframe and in components such as bypass ducts for gas-turbine engines. Ageing can be used to raise the room temperature tensile properties by ~25% and nearly double the elevated temperature properties (eg creep @ $392^{\circ}F(200^{\circ}C)$). Such a material is particularly attractive since it can be formed in the soft condition, thus lowering fabrication costs.

Common Specifications:	Specification:	Product Form:
	MSRR 8603	Sheet (Annealed)
	MSRR 8602/8605	Forging stock, forgings
	TA 58	Plate
	TA52, MSRR8606	Sheet (SHT)
	WL 3.7124, TA 53	Bar

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Η	Fe	0	Cu	Ti
0.03	0.08	0.01	0.20	0.2	203.0	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	88 (610)	71 (490)	10	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Sheet ST	90 (620)	77 (530)	24 (on 2"(50mm))	
Sheet STA	112 (770)	96 (660)	20 (on 2"(50mm))	
Bar & Rod ST	91 (630)	72 (500)	27	45
Bar & Rod STA	107 (740)	84 (580)	22	41
Extrusions ST	91 (630)	72 (500)	30	40
Extrusions STA	115 (790)	97 (670)	28	30

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Titanium Grade 9 Ti-3Al-2.5V	Ti-3-2.5
UNS Number:	R56320	
General Information:	Ti-3Al-2.5V alloy is an alp The material exhibits good range of tubular products f bicycle frames. The alloy welded tubing. ASME coo	pha alloy that is strengthened by cold working. I ductility and toughness. It is used in a wide from aircraft ducting to golf club shafts and is available as wire, bar, sheet, seamless and de approved.

Common Specifications:	Specification:	Product Form:
	AMS 4943	Seamless Tubing, Annealed
	AMS 4944	Seamless Tubing, Cold Worked, Stress Relieved
	AMS 4945	Seamless Tubing, Texture Controlled,
		Cold Worked, Stress Relieved
	ASTM B265	Sheet, Strip, Plate
	ASTM B338	Tubing
	ASTM B348 (Grade 9)	Wire, Bar, Sheet, and Plate
	ASTM B381	
	ASTM B861	Seamless Pipe
	ASTM B862	Welded Pipe
	AWS A5.16 (ERTi-9)	Weld Wire

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Ti
0.03	0.08	0.015	0.25	0.15	2.5-3.5	2.0-3.0	Balance

Note: Chemical requirements are not consistent between specifications. Check referenced specifications.

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	90 (620)	70 (483)	15	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Annealed	100 (690)	75 (515)	18	40
Solution Treated and Aged	132 (910)	120 (830)	11	-
Cold Worked, Stress Relieved	125 (860)	105 (723)	8	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

* %Ra not required by all specifications

Common Name:	Ti-3Al-2.5V with 0.1% Ruthenium Titanium Grade 28	Ti-3-2.5Ru
UNS Number:	R56323	
General Information:	Ti-3Al-2.5V alloy is a near alpha alloy tha working. This modified material incorpor enhanced corrosion resistance. The alloy sheet, seamless and welded tubing.	at is strengthened by cold rates a ruthenium addition for is available as wire, bar,

Common Specifications:	Specification:	Product Form:
	ASTM B265 (Grade 28)	Strip, Sheet, and Plate
	ASTM B338	
	ASTM B348 (Grade 28)	Bars and Billets, Annealed
	ASTM B363 (Grade 28)	Seamless and Welded Fittings
	ASTM B383 (Grade 28)	Wire
	ASTM B861	
	ASTM B862	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	H	Fe	0	Al	V	Ru	Ti
0.03	0.08	0.015	0.25	0.15	2.5-3.5	2.0-3.0	0.08-0.14	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Annealed	90 (620)	70 (483)	15	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Annealed	100 (690)	75 (515)	18	40

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-5Al-2.5Sn Titanium Grade 6	A-110AT MMA-5137	Ti-5-2.5
UNS Number:	R54520		
General Information:	Ti-5Al-2.5Al has good w at elevated temperatures metal parts such as jet tur blades. The alloy is a mo range and greater yield lo extrustions, plate, sheet, a	eldability and shows sta (600 - 1000°F). Applic bine compressor blades ore difficult alloy to forg oss. This alpha alloy is and wire.	ability and oxidation resistance rations are forgings and sheet s, ducting, and steam turbine ge with a narrow forgeability available in bar, billet, castings,

Common Specifications:	Specification:	Product Form:
	AMS 4910	Strip, Sheet, and Plate, Annealed
	AMS 4926	Bar and Ring, Annealed
	AMS 4966	Forgings, Annealed
	ASTM B265 (Grade 6)	Strip, Sheet, and Plate
	ASTM B348 (Grade 15)	Bar and Billet
	ASTM B381 (Grade 15)	Forgings
	MIL-T-9046	Strip, Sheet, and Plate
	MIL-T-9047	Bar, Re-forging
	MIL-T-81556	Extrusions
	MIL-F-83142	Forgings

Chemistry Requirements:

% Maximum unless given as a range.

Ν	C	Н	Fe	0	Al	Sn	Y	Residuals Each Max.	Residuals Max. Total	Ti
0.05	0.08	0.020	0.50	0.20	4.5-5.75	2.0-3.0	0.005	0.1	0.4	Balance
	~ .									

Note: Chemical requirements are not consistent between specifications. Check referenced specifications.

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*	Size
Forged Bars	115 (792)	110 (758)	10	25	<4"

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*	Size
Sheet and Plate, Annealed	120 (827)	113 (779)	10	-	<1.5"

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	5-2.5Sn ELI A-95AT	5-2.5 Extra Low Interstitial
UNS Number:	R54521	
General Information:	Ti-5Al-2.5Sn ELI alloy's n It is used for the main boos space shuttle. This alpha a extrusions, plate, sheet, and	nost common use is for cryogenic applications. ster pumps (liquid oxygen and hydrogen) on the lloy is available in bar, billet, castings, d wire.

Common Specifications:	Specification:	Product Form:	
	AMS 4909	Strip, Sheet, and Plate	
	AMS 4924	Bar, Ring, and Forgings	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Η	Fe	0	Y	Al	Sn	Residuals Each Max.	Residuals Max.Total	Ti
0.035	0.05	0.013	0.25	0.12	0.01	4.5-5.75	2.0-3.0	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*	Size
Forgings	100 (689)	90 (620)	10	25	<3"

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Bar, Forged	118 (815	103 (710)	19	34
Casting	115 (795)	105 (725)	10	17

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-4V Ti-6-4	Titanium Grade 5
UNS Number:	R56400	
General Information:	Ti-6Al-4V alloy and is also the mu utilized "as cast" medical, and othe and favorable con wire, bar, plate, s	is the most widely used titanium alloy of the alpha-plus-beta class, ost common of all titanium alloys. The alloy is castable and is in sporting goods. The wrought material is used in aerospace, er applications where moderate strength, good strength to weight, rrosion properties are required. The alloy is available as castings, sheet, forgings, rings, and billet.

Common Specifications:	Specification:	Product Form:
	AMS 4911	Strip, Sheet, and Plate, Annealed
	AMS 4920	Forgings, Alpha-Beta or Beta Processed, Annealed
	AMS 4928	Bar, Wire, Forgings, Ring, Annealed
	AMS 4965, AMS 4963, and	Bar, Wire, Forgings, Ring, Solution
	AMS 4967 (Capable of)	Treated & Aged
	AMS-T-9047	
	ASTM B348 (Grade 5)	Bar and Billet, Annealed
	ASTM B367 (Grade 5)	Castings
	ASTM F1472	Wrought Alloy for Surgical Implants
	AWS A5.16 (ERTi-5)	Weld Wire

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Y	Ti
0.05	0.08	0.125	0.40	0.2	5.5-6.75	3.5-4.5	0.005	Balance

Note: Chemical requirements are not consistent between specifications. Check referenced specifications.

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	130 (895)	120 (828)	10	25
Solution Treated and Aged	160 (1103)	150 (1034)	10	20
Castings	130 (895)	120 (828)	6	10

Note: Mechanical properties vary with diameter. Check referenced specifications.

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Annealed	145 (1000)	132 (910)	18	40
Solution Treated and Aged	161 (1110)	141 (970)	15	45
Castings	145 (1000)	130 (895)	5	15

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6A1-4V ELITi 6-4ELIGrade 23 Titanium
UNS Number:	R56407
General Information:	Ti-6Al-4V alloy is the most widely used titanium alloy of the alpha-plus- beta class, and is also the most common of all titanium alloys. This modification incorporates extra low interstitials (ELI). The wrought material is used in applications where moderate strength, good strength to weight, and favorable corrosion properties are required. This alloy is commonly used in medical implants where strength is important. The alloy is available as castings, wire, bar, plate, sheet, forgings, rings, and billet.

Common Specifications:	Specification:	Product Form:
	AMS 4907	Sheet, Strip, and Plate
	AMS 4956	Wire
	ASTM B265 (Grade 23)	Strip, Sheet, and Plate
	ASTM B348 (Grade 23)	Bars and Billets; annealed
	ASTM B363 (Grade 23)	Seamless and welded fittings
	ASTM B381	Forgings
	ASTM B861	Seamless Pipe
	ASTM B862	Welded Pipe
	ASTM B863 (Grade 23)	Wire
	ASTM F136	Wrought Alloy for Surgical Implants
	AWS A5.16 (ERTi-23)	Weld Wire

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	V	Al	Ti
0.03	0.08	0.02	0.25	0.13	3.5-4.5	5.5-6.75	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Beta-Annealed	120 (828)	110 (759)	10	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Annealed	132 (910)	120 (828)	10	40

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	6Al-4V ELI with 0.1% Ruthenium Titanium Grade 29	Ti-6-4 Ru
UNS Number:	R56404	
General Information:	Ti-6Al-4V alloy is the most widely use class, and is also the most common of a incorporates extra low interstitials (ELI enhance the corrosion properties. The applications where moderate strength, a corrosion properties are required. The plate, sheet, forgings, rings, and billet.	d titanium alloy of the alpha-plus-beta all titanium alloys. This modification I) and also has a ruthenium addition to wrought material is used in good strenght to weight, and favorable alloy is available as castings, wire, bar,

Common Specifications:	Specification:	Product Form:
	ASTM B265 (Grade 29)	Strip, Sheet, and Plate
	ASTM B348 (Grade 29)	Bar and Billet, Annealed
	ASTM B363 (Grade 29)	Seamless and Welded Fittings
	ASTM B381	Forgings
	ASTM B861(Grade 29)	Seamless Pipe
	ASTM B862 (Grade 29)	Welded Pipe
	ASTM B863 (Grade 29)	Wire
	AWS A5.16 (ERTi-29)	Weld Wire

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Ru	Ti
0.03	0.08	0.015	0.25	0.13	5.5-6.5	3.5-4.5	0.08-0.14	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	120 (828)	110 (759)	10	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
As provided	132 (910)	120 (828)	18	40

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-7Nb
UNS Number:	R56700
General Information:	Ti-6Al-7Nb is a high strenght titanium alloy used 1° for medical implants.

Common Specifications:	Specification:	Product Form:	
	ASTM - F1295	Bar	
	ISO 5832-11		

Chemistry	Requirements:
-----------	----------------------

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	Nb	Ta
0.05	0.08	0.009	0.25	0.2	5.5-6.5	6.5-7.5	0.5

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Bar	130.5 (900)	116 (800)	10	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
0.25-0.75" diameter bar	148 (1021)	132 (910)	15	42

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-6V-2Sn Ti-6-6-2
UNS Number:	R56620
General Information:	Ti-6Al-6V-2Sn alloy is used for forgings and extrusions requiring greater strength thank Ti-6Al-4V. Typical uses include rocket engine cases, airframe applications, as well as fasteners. Fracture toughness and fatigue resistance are lower than Ti-6Al-4V. This alpha-beta alloy is available in bar, billet, extrusions, plate, sheet, and wire.

Specification:	Product Form:
AMS 4918	Sheet-Annealed, Strip, and Plate-Annealed
AMS 4936	Extrusions, Annealed
AMS 4971	Bar, Wire, Forgings, Ring-Annealed
AMS 4978	Wire, Forgings, Ring-Annealed
AMS 4979	Wire, Forgings, Ring-STA
MIL-T-9046	Sheet, Strip, and Plate
MIL-T-9047	Bar, Reforging
MIL-T-81556	Extrusions
MIL-T-83142	Forgings
	Specification: AMS 4918 AMS 4936 AMS 4971 AMS 4978 AMS 4979 MIL-T-9046 MIL-T-81556 MIL-T-83142

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Cu	Y	Al	V	Sn	Residuals Each Max.	Residuals Max.Total
0.04	0.05	0.02	0.35-1.0	0.2	0.35-1.0	0.004	5.0-6.0	5.0-6.0	1.5-2.5	0.1	0.4

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*	Size
Forging	175 (1206)	160 (1103)	8	20	<1"
Annealed Forgings	150 (1035)	140 (965)	10	20	

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA	Size
Bar, Forged	160 (1103)	150 (1034)	15	40	1-2"
Casting	160 (1105)	140 (965)	6	11	

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-2Sn-4Zr-2Mo Ti-6-2-4-2
UNS Number:	R54620
General Information:	Ti-6Al-2Sn-4Zr-2Mo is used for forgings and rolled products in jet engines and airframe applications where high strength, toughness, and creep resistance are required. This near alpha alloy is available in bar, billet, castings, sheet, strip, and wire.

Common Specifications:	Specification:	Product Form:
	AMS 4975	Bar, Wire, and Rings
	AMS 4976	Forgings
	MIL-T-9046	Sheet, Strip, and Plate
	MIL-T-9047	Bar, Reforging
	MIL-T-81915	Castings
	MIL-T-83142	Forgings

Chemistry Requireme % Maximum unless given as a range.

N	С	Н	Fe	Al	0	Y	Zr	Si	Sn	Мо	Residuals Each Max.	Residuals Max. Total	Ti
0.05	0.05	0.125	0.10	5.5-6.5	0.15	0.01	3.6-4.4	0.06-0.10	1.8-2.2	1.8-2.2	0.1	0.3	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*	Size
Annealed, Forgings	130 (896)	120 (827)	10	25	<3"
NOTE M L : L			· C•		

NOTE: Mechanical properties vary with diameter. Check referenced specifications.

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA	Size
Bar, Forged	145 (999)	135 (930)	14	33	1-2"
Castings	125 (861)	115 (792)	8	20	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-2Sn-4Zr-6Mo Ti-6-2-4-6
UNS Number:	R56260
General Information:	Ti-6Al-2Sn-4Zr-6Mo is a "rich" alpha-beta alloy which finds use in aircraft applications and in the oil and gas industry. The materials is more difficult to fabricate than the more "lean" Ti-6Al-2Sn-4Zr-2Mo alloy. The alloy is available as wire, bar, billet, and forgings.

Common Specifications:	Specification:	Product Form:
	AMS 4981	Bar, Wire, Forgings, Heat Treated

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Mo	Sn	Ti
0.04	0.04	0.125	0.15	0.15	5.5-6.5	3.6-4.4	5.5-6.5	1.75-2.25	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Solution Treated & Aged	170 (1172)	160 (1103)	8-10	15-20

Note: Properties depend upon size, orientation, and condition. Refer to reference specification.

Typical Tensile Properties:

			1	1
Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Annealed	160 (1110)	148 (1020)	15	
Solution Treated & Aged (BSTA)	174 (1200)	152 (1050)	7	
Solution Treated & Aged (STA-1)	176 (1210)	163 (1120)	13	
Solution Treated & Aged (STA-2)	229 (1580)	204 (1410)	4	

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-5Al-2Zr-2Sn-4Mo-4Cr
UNS Number:	R58650
General Information:	This near-beta, high strength, deep hardenable forging alloy was developed primarily for gas turbine applications such as discs for fan and compressor stages. In addition to offering superior strength properties over Ti-6Al-4V, the alloy also provides higher creep resistance in the intermediate temperature ranges.

Common Specifications: Spec	ification:	Product Form:
AMS	S 4995	Billet

Chemistry Requirements:

% Maximum unless given as a range.

Ν	Н	0	Al	Cr	Мо	Sn	Zr	Fe	Titanium
0.04	0.0125	0.08-0.13	4.5-5.5	3.5-4.5	3.5-4.5	1.5-2.5	1.5-2.5	0.3	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (shape)	1165(169)	1110(161)	10	32

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
	144(993)	122(841)	14	46

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-7Al-4Mo Ti-7-4	HA 146 C-135A Mo
UNS Number:	R56740	
General Information:	Ti-7Al-4Mo bar and forgings compressor blades, and space billet, and extrusions.	are primarily used for jet engine discs, rs. This alpha-beta alloy is available in bar,

Common Specifications:	Specification:	Product Form:
	AMS 4970	Bar and Forgings
	MIL-T-9047	Bar and Stock, Reforged
	MIL-T-81556	Extrusions
	MIL-T-83142	Forgings

Chemistry Requirement % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	Mo	Y	Residuals Each Max.	Residuals Max.Total	Titanium
0.05	0.1	0.013	0.30	0.2	6.5-7.3	3.5-4.5	0.005	0.1	0.4	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*	Size
STA Forgings	170 (1172)	160 (1103)	8	15	<1"

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA	Size
Forged, Annealed	145 (1000)	135 (931)	10	20	<1"

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-8Al-1Mo-1V Ti-8-1-1-1
UNS Number:	R54810
General Information:	Ti-8Al-1Mo-1V is a "near alpha" alloy. It is primarily used in aircraft engine applications. The alloy is noted for being difficult to fabricate in larger sections. The alloy is available as wire (for welding), bar, billet, sheet, plate, extrusions, and forgings.

Common Specifications:	Specification:	Product Form:
	AMS 4915	Sheet, Strip, and Plate, Single Annealed
	AMS 4916	Sheet, Strip, and Plate, Duplex Annealed
	AMS 4933	Extrusions and Rings, Heat Treated
	AMS 4955	Weld Wire
	AMS 4972	Bar, Wire, and Rings, Heat Treated

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Мо	Ti
0.05	0.08	0.0125	0.30	0.15	7.35-8.35	0.75-1.25	0.75-1.25	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Annealed	130 (895)	120 (828)	10	20
Heat Treated	170 (1180)	155 (1070)	10	20
Heat Treated, Tested at 800F	90 (620)	70 (480)	10	25

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Annealed	148 (1021)	134 (924)	19	40

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-10V-2Fe-3Al Ti-10-2-3
UNS Number:	R56410
General Information:	Ti-10V-2Fe-3Al is a near beta alloy capable of a wide range of strenghts depending on heat treatement applied. The alloy has excellent forgeability, high toughness and good hardenability which allows good properties in sections to 5" thick.
	Ti-10V-2Fe-3Al is used for high strenght aircraft forgings. Its excellent forgeability allows it to be used in near-net shape forging applications. Ti-10V-2Fe-3Al is available in billet, bar and plate.

Common Specifications:	Specification:	Product Form:	
	AMS 4983A	Forging STA	
	AMS 4984	Forging STA	
	AMS 4986	Forging STOA	
	AMS 4987	Forging STOA	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Ti
0.05	0.05	0.015	1.6-2.2	0.13	2.6-3.4	9.0-11.0	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
STA	160	145	6	10
STOA	140 (965)	-	-	-

NOTE: Properties depend on form, heat treatment and size. Check referenced specifications.

Typical Tensile Properties:

	Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA	
						Klc
						ksi √ in
α+β	STA	180-200	168-184	4-12	10-30	42-56
Forged	STOA	140-150	130-140	20	45	93
	BAOA	145	135	17	46	100

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-3Al-8V-6Cr-4Mo-4Zr	3-8-6-44
	Ti Beta-C	38-6-4-4

UNS Number:

General Information: Ti-3Al-8V-6Cr-4Mo-4Zr is a beta alloy, which is capable of achieving a wide range of mechanical properties. In the solution annealed condition the alloy is very ductile and can be easily cold worked. High strength levels can be developed by cold working, solution treating, and aging, or a combination of these processes. This alloy also exhibits very good resistance to reducing acids. The alloy is commonly used for springs and fasteners for aircraft, tubing in oil and gas wells, and as wire in sporting goods and jewelry, and has limited availability in wire, bar, tubing, sheet, and plate.

Common Specifications:	Specification:	Product Form:			
	AMS 4957	Round Bar & Wire, Solution Treated &			
		Cold Drawn			
	AMS 4958 Bar and Billet, Solution Treated & So				
		Treated and Aged			
	ASTM B265 (Grade 19)	Strip, Sheet, and Plate			
	ASTM B348 (Grade 29)	Bar and Billet, Annealed			

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Y	Cr	Mo	Zr	Ti
0.03	0.05	0.03	0.30	0.12	3.0-4.0	7.5-8.5	0.005	5.5-6.5	3.5-4.5	3.5-4.5	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Annealed	115 (793)	110 (759)	15	n/a
Solution Treated and Aged	170 (1172)	160 (1103)	6	15

NOTE: mechanical properties vary with diameter. Check referenced specifications.

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Solution Treated	135 (931)	120 (827)	25	60
Solution Treated + Cold Work 25%	160 (1103)	145 (1000)	15	45
Solution Treated + Cold Work 25% +Age	185-195 (1276-1344)	175-185 (1207-1276)	15-Oct	30-40

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-13V-11Cr-3Al Ti-13-11-3	13-11-3 B120VCA
UNS Number:	R58010	
General Information:	Ti-13V-11Cr-3Al is a beta alloy u able to be cold worked and can be are substantially longer for the allo commonly used for formed sheet is available in sheet, wire, and bar	sed primarily for sheet products. The alloy is aged to high strengths. Typical aging times by than for other beta alloys. The alloy is metal components for aircraft and springs, and

Common Specifications:	Specification:	Product Form:
	AMS 4917	Sheet, Strip, and Plate, Solution Treated
	AMS 4959	Wire, Spring Temper

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	V	Cr	Ti
0.05	0.05	0.025	0.35	0.17	2.5-3.5	2.5-14.:	10-12	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*	
Solution Treated	130 (896)	120 (827)	8	-	
Sprint Temper	180 (1241)	n/a	6	2	
STA	170 (1172)	160	4	-	

Note: Mechanical properties vary with diameter. Check referenced specifications.

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Solution Treated	140 (965)	130 (896)	20	50
Solution Treated + Cold Work	175-185 (1207-1276)	160-170 (1103-1172)	8	30
Solution Treated + Cold Work + Age	210-220 (1448-1517)	n/a	5-8	n/a

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	TIMETAL 21S
	Ti-15Mo-3Nb-3Al2Si

UNS Number:

General Information: TIMETAL 21S is a metastable beta titanium alloy that offers substantial weight reductions over other engineering materials. It offers the high specific strength and good cold formability of a metastable beta alloy, but has been specifically designed for improved oxidation resistance, elevated temperature strength, creep resistance, and thermal stability.

Common Specifications:	Specification:	Product Form:	
	ASTM B265	Sheet, Strip, and Plate	
	ASTM B348	Bar and Billet	
	ASTM B363	Fittings	
	ASTM B381	Forgings	
	ASTM B861	Seamless Pipe	
	ASTM B862	Welded Pipe	
	ASTM B863	Wire	
	ASME SB-265	Sheet, Strip, and Plate	
	ASME SB-348	Bar and Billet	
	ASME SB-363	Fittings	

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Si	Mo	Nb	Al	Residuals Each Max.	Residuals Max. Tota	Ti
0.05	0.1	0.015	0.40	0.17	0.15-0.25	14.0-16.0	2.4-3.2	2.5-3.5	0.1	0.1	remainder

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Solution Treatment*	115 (793)	110 (759)	15	-
* A CITIM D 265 : :				

*ASTM B-265 minimums

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
Solution treatment + age	150 (1034)	140 (965)	6 min.	-

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-4Al-4Mo-2Sn Ti-550
UNS Number:	None assigned
General Information:	Ti 550 is a high strength, forgeable alpha beta alloy. In the solution treated and aged condition it has superior tensile and fatigue properties compared to Ti 6-4 combined with good elevated temperature tensile and creep properties up to 750°F (400°C). This alloy has applications in the aerospace industry both as aeroengine (eg compressor discs) and airframe components (eg flap tracks). Ti 550 has also found applications in high performance automotive engines. The alloy may be welded using electron beam or laser welding techniques. In sheet form, the alloy has good superplastic forming properties and an excellent balance of strength and toughness.

Common Specifications:	Specification:	Product Form:
	MSRR 8626	Bar
	MSRR 8663/8634	Discs, rotating components
	TA 45/46	Rod/Bar
	TA 47	Forging stock

Chemistry Requirements:

% Maximum unless given as a range.

Ν	O+2	Н	Fe	Al	Мо	Sn	Si	Ti
0.05	0.27	0.0125	0.20	3.0-5.0	3.0-5.0	1.5-2.5	0.3-0.7	Balance

Note: Chemical requirements are not wlways consistant between specifications

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Bar/Rod <1 in (25mm)	160 (1100)	139 (960)	9	20
Bar/Rod/Forgings 1-4 in (25-100mm)	152 (1050)	133 (920)	9	20
Bar/Rod/Forgings 4-6 in (100-150 mm)	145 (1000)	126 (870)	9	20
Plate 0.2-2.5 in (5-65 mm)	149 (1030)	130 (900)	9	20

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
1 in (25mm) rod ST	157 (1080)	135 (930)	12	40
1 in (25mm) rod ST+A	174 (1200)	155 (1070)	14	42

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.15Si Ti-6-2-2-2-2
UNS Number:	R56222
General Information:	Ti-6Al-2Sn-2Zr-2Mo-2Cr-Si has been produced in a variety of mill products including sheet, plate, bar, and forgings. Triplex heat treatments allow damage tolerant properties to be minimized. Properties exceed those available in the less hard Ti-6Al-4V alloy. The alloy is available in sheet, plate, bar, and forgings.

Common Specifications:	Specification:	Product Form:
	AMS 4898	Sheet Annealed

Chemistry Requirements:

% Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	Cr	Si	Zr	Mo	Sn	Ti
0.03	0.08	0.0125	0.15	0.15	2.25-6.25	1.75-2.25	0.12-0.20	1.75-2.25	1.75-2.25	1.75-2.25	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
Sheet Annealed	155 (1069)	150 (1034)	5-8 *	n/a

** depends on GA

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
STA	170 (1172)	160 (1103)	12	20

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti 834 Ti-5.8Al-4.0Sn-3.5Zr- 0.7Nb-0.5Mo-0.35Si-0.06C
UNS Number:	None assigned
General Information:	Ti 834 possesses the highest temperature capability of any commercial titanium alloy (up to 1112°F (600°C)) and is primarily used in aircraft engine applications. This "near alpha" alloy is weldable and possesses a fine grained alpha/beta microstructure that confers the best combination of tensile strength, fatigue and creep resistance. Furthermore, in comparison with other creep resistant Ti alloys, Ti 834 can be stress relieved at temperatures up to 1292°F (700°C).

Common Specifications:	Specification:	Product Form:	
	CP5238	Bar	
	CPW534	Billet	
	DMD 9003	Sheet	
	MSRR8679	Billet	
	MSRR8681	Bar	
	MTS1267	Bar/billet	

Chemistry Requirements: % Maximum unless given as a range.

Ν	С	Н	Fe	0	Al	Sn	Zr	Nb	Mo	Si	Ti
0.0	3 .0408	0.006	0.05	.075150	5.5-6.1	3.0-5.0	3.0-5.0	0.5-1.0	0.25-0.75	0.20-0.60	Balance

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Forgings	149 (1030)	132 (910)	7.5	15
Forgings tested @1112°F	85 (585)	65 (450)	11	20

Note: Properties depend upon form, heat treatment and size. Check referenced specifications.

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% Ra*
Forgings	155 (1067)	135 (931)	14	30
Forgings tested @1112°F	102 (701)	78 (541)	20	58

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

Common Name:	Ti-5Al-1Sn-1Zr-1V-0.8Mo TIMETAL 5111
UNS Number:	
General Information:	TIMETAL 5111 is a near alpha titanium alloy of intermediate strength. This alloy has been designed for high toughness, good weldibility, stress- corrosion cracking resistance, and room temperature creep resistance. TIMETAL 5111 is ideally suited for applications in marine environments where toughness and corrosion resistance are essential. The alloy has been produced on a commercial scale. Forging an dmachining characteristics of TIMETAL 5111 are very similar to TIMETAL 6-4.

Common Specifications:	Specification:	Product Form:
	ASTM 468 (32)	
	ASTM B265	Bar and Billet
	ASTM B348	Bar and Billet
	ASTM F467	
	ASTM F467(32)	
	ASTM F468	
	ASTM Grade 32	

Chemistry Requirements % Maximum unless given as a range.

Ν	Al	Н	Fe	0	Sn	V	Zr	Мо	Si	С	Ti
0.03	4.5-5.5	0.015	0.25	0.11	1.4	0.6-1.4	0.6-1.4	0.6-1.2	0.06-0.14	0.08	Remainder

Minimum Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA*
As specified (plate)	100 (689)	85 (586)	10	-
*ASTM B-265 minimum				

Typical Tensile Properties:

Condition	UTS ksi (Mpa)	0.2%YS ksi (MPA)	% El.	% RA
1" plate	121 (835)	104 (720)	13	28

Note: Typical properties are not to be utilized as a requirement, but are only listed for guidance. These properties may or may not be attainable in all circumstances.

International Specifications

USA Specifications	Туре	ASTM	German	Aerospace	Russian	British	Italian (UNI 10221)	Chinese	Japanese
			DIN	German WL		Standards TA			
GR-1	BPSTWF	1	3.7025	3.7024	BTI-0	1	Til-Type 1	TA0(C.P.Ti)	Gr-1
GR-2		2	3.7035	3.7034	BTI-0	2,3,4,5	Ti2-Type 2	TA1(C.P.Ti)	Gr-2
GR-3	BPSWFC	3	3.7055	-	-	-	Ti3-Type 3	TA2(C.P.Ti)	Cr-3
GR3 +Pd			3.7255	-	-	-	-	-	-
GR-4	BPSWFC	4	3.7065	3.7064	-	6,7,8,9	Ti4-Type 4	TA4(Ti-3A1)	Gr-4
GR-7	BPSTWFC	7	3.7235	-	Alloy 4200	-	Ti2Pd-Type 7	TA9 (Ti-0.2Pd)	Gr-13
							Ti1Pd-Type 11		
							C 0,10 max; Fe 0,15		
GR-11			3.7225	-	-	-	max; O 0,15 max	TA9 (Ti-0.2Pd)	Gr-12
		1					TiNiMo-Type 12		
GR-12	BPSTWF	12	3.7105	-	-	-		TA10 (Ti-0.3Mo-0.8Ni)	
						10, 11, 12, 28,	TiAl6V4-Type 5		
GR-5	BPSWFC	5	3.7165	3.7164	BT6, BT6S	56, 59		TC4(Ti-6A1-4V)	Gr 6 0
							TiAl6V4ELI-Type 5.1		
							N 0,05 max; O 0,13		
							max: H 0.0125 max: C		
							0.08 max: Fe 0.25 max:		
							A1 5 5-6 5 V 3 5-4 5		
							111 5,5 6,5, 7 5,5 1,5		
GR-5ELI						-		-	-
Ti-10Fe-2V-3Al (10-2-3)	BF		-	_	-	_	-	-	-
Ti-4Al-4 Mo-2.5Sn (550)	BPF		3.7185	3.7184	-	45-51, 57	-	-	-
Ti-15V-3Al-3 Cr-3Sn (15-3)	PSWT		-	-	-	-	-	-	-
		1			BT25,		-		
Ti-6Al-2Sn 4Zr-2Mo (6-2-4-2)	BPSF		3.7145	3.7144	BT184*	-		-	-
T-6Al-2Sn-4Zr			-	-	-	-	-	-	-
Ti-3Al-2.5V (Grade 9)		9	3.7195	3.7194	PT3V*	-	TiAl3V2,5-Type 9	-	Gr 6 1
TI-3Al-2.5V with Ruthenium (Grade 28)		28	-	-	-	-	-	-	-
Ti-5Al-2.5Sn (Grade 6)		6	3.7115	3.7114	BT5-1	-	TiAl5Sn2,5-Type 6	TA7(Ti-5A1-2.5Sn)	-
Ti-5Al-2Sn ELI			-	-	BT5-1CH	-	-	-	-
Ti-6Al-4V ELI with Ruthenium (Grade 23)		23	-	-	-	-	-	-	Gr 6 0 E
Ti-6Al-4V ELI with Ruthenium (Grade 29)			-	-	-	-	-	-	-
Ti-6Al-6V-2Sn			3.7175	3.7174	-	-	-	-	-
Ti-6Al-2Sn-4Zr-6Mo		l	-	-	-	-	-	-	-
Ti-5Al-2Sn-2Zr-4Mo-4Cr			-	-	-	-	-	-	-
Ti-7Al-4Mo			-	-	BT8	-	-	-	-
Ti-8Al-1Mo-1V			-	3.7134	BT14*	_	_	_	-

International Specifications

USA Specifications	Туре	ASTM	German	Aerospace	Russian	British	Italian (UNI 10221)	Chinese	Japanese
			DIN	German WL		Standards TA			
Ti-10V-2Fe-3Al			-	-	-	-	-	-	-
Ti-3Al-8V-6Cr-4Mo-4Zr			-	-	-	-	-	-	-
Ti-13V-11Cr-3Al			-	-	TC6*	-	-	-	-
Ti-6Al-5Zr-0.5Mo-Si			3.7155	3.7154		-	-	-	-
Ti-5Al-2.5Fe			3.711			-	-	-	-
Ti-Cu2			-	3.7124		-	-	-	-
Ti-6Al-2Sn-4Zr-2Mo (+Si)			3.7145	3.7148		-	-	-	-
					BT2.5,		-		
Ti-6Al-2Sn-4Zr-2Mo					BT18Y*	-		-	-
Ti6-4ELE					BT6CH	-	-	-	-
							N 0,04 max; C 0,05		
							max; Fe 0,35-1,0; O		
							0,20 max; H 0,015		
							max; Al 5,0-6,0; V 5,0-		
							6,0; Sn 1,5-2,5; Cu		
TiAl6V6Sn2-Type 13						-	0,35-1,0	-	-
							N 0,05 max; C 0,05		
							max; Fe 1,6-2,2; O		
							0,13 max; H 0,015		
							max; Al 2,6-3,4; V 9,0-		
TiV10Al3Fe2-Type 14						-	11,0	-	-

Russa * = similar to

Italian - UNI 10221: Chemical requirements for Titanium and Titanium alloys for ingots and semi-finished products

b p -

Types:

b - bar	t -	tube
p - plate	w -	wire
s - sheet	f -	forgings
	c -	casting

Titanium Metal Terminology

FINISHED PRODUCT SHAPES

(Ready for fabrication into components)

Plate - Typically a hot finished flat rolled product with a width greater than 8" and a thickness greater than 0.125". Commonly available in 48" or 60" widths.

Sheet and Strip - Generally have thickness ranging from 0.025" to 0.125" and is produced by continuous rolling of large coils. It may then be cut into lengths and sold as sheet.

Bar - Refers to rounds, squares, hexagons and similar shapes measuring at least 3/8" in cross-section.

Wire Rod – Semi-finished product used for the manufacture of wire.

Wire - Usually cold drawn from wire rod.

Foil - May be any width but no more than 0.005" thick.

Tubular Product - Describes all hollow titanium products, usually cylindrical in shape such as condenser tubing.

HEAT TREATING

Heat Treating -Is the process of altering the properties of a metal by subjecting it to a controlled sequence of thermal cycles. The time of retention at a specific temperature and the rate of cooling are as important as the temperature itself. Heat treatment can be performed to improve machinability, increase toughness, improve cold forming characteristics, alter hardness ad tensile strength, up and down, and to relieve residual stress as well as improve shearability.

Annealing -Refers to a variety of operations involving heating and slow cooling to remove stresses and alter ductility and toughness. Annealing softens the titanium making it more workable for shearing, forming and machining.

Stress Relieving - Removes residual stresses from within the metal.

Quenching - Rapid cooling from a specific temperature.

Turning, Grinding and Polishing - Produces bars that are characterized by superior surface finish, dimensional precision and straightness.

METALLURGY

Acicular Alpha - A fine needle-like transformation product brought about through nucleation and growth.

Alpha - The low temperature allotrope of titanium with a hexagonal, close-packed crystal structure.

Alpha-Beta Structure - A microstructure that contains both alpha and beta as the principal phases.

Alpha Case - The oxygen-enriched, alpha-stabilized surface that results from elevated temperature air exposure.

Alpha-Prime (Martensitic Alpha) - A supersaturated, non-equilibrium phase formed by a diffusion-less transformation of beta phase which is lean in solute.

Alpha Stabilizer - An alloying element that dissolves preferentially in the alpha phase and raises the alphabeta transformation temperature.

Alpha Two, (a,2) - An ordered alpha structure, such as Ti₃Al and Ti₃ (Al, Sn) found in highly stabilized alpha alloys.

Alpha Transus - The temperature that designates the phase boundary between the alpha and alpha-plus-beta fields.

Beta - The high temperature allotrope of titanium with a body-centered cubic crystal structure.

Beta Eutectoid - Beta stabilizing alloying elements that result in the decomposition of beta to eutectoid products, such as alpha and inter-metallic compounds.

Beta Isomorphous - Beta stabilizing alloying elements which are completely miscible in the beta phase.

Beta Stabilizer - An alloying element which dissolves preferentially in the beta phase and lowers the beta transformation temperature. Such elements promote the retention of beta at room temperature.

Beta Transus - The temperature which designates the phase boundary between the alpha-plus-beta and beta fields.

Elongated Alpha - A fibrous type of structure brought about by unidirectional fabrication.

Titanium Metal Terminology

Equiaxed Structure - A polygonal structure having approximately equal dimensions in all directions.

Hydride Phase - The phase TiH formed in titanium when the hydrogen content exceeds the solubility limit.

Interstitial Element - An element with a relatively small atom which can assume position in the interstices of the titanium lattice. These elements are oxygen, nitrogen and carbon.

Intergranular Beta - Beta situated between alpha grains.

Intermetallic Compound - An intermediate phase in an alloy system that has a narrow solubility range.

Matrix - The constituent which forms the continuous phase of a two phase microstructure.

Metastable Beta - A non-equilibrium phase that can be transformed to alpha or eutectoid products by heat or stress.

 $\mathbf{M_{f}}$ - The temperature at which the martensite reaction is complete.

 M_s - The maximum temperature at which alpha-prime begins to form from the beta phase on cooling.

Omega - A non-equilibrium, submicroscopic phase that forms during the nucleation and growth transformation of beta to alpha.

Ordered Structure - The orderly or periodic arrangement of solute atoms on the lattice sites of the solvent.

Plate-like Alpha - Alpha grains which form along preferred planes of beta during transformation of beta to alpha. Plate-like alpha is characterized by relatively long and wide grains.

Primary Alpha - Equilibrium alpha which remains untransformed on heating to temperatures below and for short times above the beta transus.

Prior Beta Grain Size - The grain size of the beta phase prior to transformation to alpha.

Serrated Grain - Alpha grains which are characterized by irregular grain size and jagged grain boundaries.

Spheroidal Structure - Grains with a circular or globular appearance.

Substitutional Element - An alloying element with an atom size similar to the solvent which can replace or substitute for the solvent atoms in the lattice.

Transformed Beta - Products of unstable beta after transformation, e.g., alpha, beta and eutectoid products.

Widmanstatten Structure - A structure brought about by the formation of a new phase along preferred crystallographic planes of the prior phase. The Widmanstatten structure is a transformation product of the beta phase.

ROUGH PRODUCT SHAPES

Ingots - Cylindrical in shape with a 1.5 or more length to diameter ratio. A typical production ingot in 34" diameter by 96" long and weighs 14,000 pounds.

Bloom – Semi-finished billet, slab or bar of titanium that has been hammered, forged or rolled from an ingot.

Billet - Piece of semi-finished titanium square or nearly square in section, made by rolling an ingot or bloom.

Slab – Semi-finished titanium block having a rectangular cross-section in which the width is at least twice the thickness. Slab is also a cast product from EB or plasma melting.

TITANIUM SPONGE PRODUCTION

Titanium Ore - The most common ore used in the titanium metals industry is rutile which is a black beach sand containing +95% TiO₂. The alternate ore is ilmenite, which is only 55 to 60% TiO₂ with the remainder being iron oxides.

Chlorination - Rutile ore (TiO_2) reacts with chlorine gas at elevated temperatures to yield titanium tetrachloride, a colorless liquid.

Coke - The carbon feed material used in chlorination.

Chlorination - Titanium Tetrachloride, TicCl₄, **Tickle -** Titanium Tetrachloride is the product of chlorinating titanium dioxide "with Cl in the presence" of carbon to remove the oxygen and

Titanium Metal Terminology

produce TiCl₄. As used in the metals industry, it is a clear, colorless liquid at room temperature.

Titanium Dioxide - TiO_2 is a pure white material used as pigment in paint. Over 90% of all titanium ores that are mined end up as pigment. TiO_2 is also used in cosmetics such as lipstick.

Reduction - The process of converting TiCl₄ to titanium metal using a reducing agent such as magnesium or sodium.

Magnesium Reduction - Titanium tetrachloride combined with molten magnesium metal in a steel reactor under a controlled atmosphere yields titanium metal in sponge form and magnesium chloride (MgCl₂) as a by product. The pores in the spongy mass of titanium are filled with Mg or MgCl₂. This residual material is removed either by leaching or vacuum distillation.

Vacuum Distillation - For the vacuum distillation process, 366 stainless steel reactor pots are used. After the reduction is completed, the hot reactor pot is transferred to a cold wall vacuum furnace and the residual Mg-MgCl₂ is distilled over into a collection vessel for recovery.

Electrolytic Cell - Magnesium chloride (MgCl₂) is electrolyzed to recapture chlorine gas and magnesium metal, both of which are recycled through the process.

Sponge - A porous metal product of the chemical reduction of titanium tetrachloride to metal by the Kroll or Hunter process.

Kroll Process - A process for the production of titanium sponge metal where the reducing agent is magnesium.

Hunter Process - The Hunter Process uses sodium as the reducing agent. The sponge produced is purified by a weak acid leach. Between 1990 and 1994 all of the companies using the Hunter Process have gone out of business or shutdown that section of the plant.

Leaching - Titanium sponge passes through a rotaryleaching vessel (made from titanium) where aqua regia and water remove trace magnesium and other impurities.

Leached Sponge - A sponge metal that has been purified by using a weak acid to remove the

impurities, such as unreacted reducing agent or byproduct salt from the sponge.

Distilled Sponge - A sponge metal that has been purified by vacuum distillation instead of leaching. The impurities are removed from the pores of the sponge by vaporizing rather than digestion in leaching.

Sponge Mass - Is the 18,000-pound cylindrical block of sponge pushed out of the reactor vessel after the completion of reduction and distillation.

Titanium Crystals - A high purity titanium crystal produced by the iodide of electro-refining process. Normally in the 55 to 90 Bhn range.

Sodium - The agent used to reduce $TiCl_4$ to titanium metal in the Hunter Process.

Other Resources

International Titanium Association (ITA) 2655 West Midway Blvd. Suite 300 Broomfield, CO 80020 USA Phone: (303) 404-2221 Fax: (303) 404-9111 Website: www.titanium.org Email: <u>info@titanium.org</u>

American Society of Mechanical Engineers (ASME) 3 Park Avenue New York, New York 10016 USA Phone: (973) 882-1167 Fax: (973) 882-1717 Website: <u>www.asme.org</u> Email: <u>infocentral@asme.org</u>

American Society for Testing and Materials (ASTM) 100 Barr Harbor Drive Conshohocken, PA 19428-2959 USA Phone: (610) 832-9585 Fax: (610) 832-9555 Website: <u>www.astm.org</u> Email: <u>service@astm.org</u>

American Welding Society (AWS) 550 Northwest LeJeune Road Miami, FL 33126 USA Phone: (800) 443-9353 or 305-443-9353 Fax: (305) 443-7559 Website: <u>www.aws.org</u> Email: <u>info@aws.org</u>

British Standards Institution (BSI) British Standards House 389 Chiswick High Road London, W4 4AL United Kingdom Phone: 44 (0) 20 8996 9000 Fax: 44 (0) 20 8996 7001 Website: <u>www.bsi-global.com</u> Email: <u>cservices@bsi-global.com</u> Deutsches Institut für Normung e.V (DIN) Offentlichkeitsarbeit Burggrafenstrabe 6 10787 Berlin, Germany Phone: 49 (30) 2601 0 Fax: 49 (30) 2601-1260 Website: <u>www.din.de</u> Email: info@beuth.de

Japan Titanium Society (JTS) 2-9, Kanda Nishiki-Cho Chiyoda-Ku, Tokyo 101-0054 Japan Phone: 81 (332) 9559-58 Fax: 81 (332) 9361-87 Website: <u>www.titan-japan.com</u> Email: <u>ito@titan-japan.com</u>

Society of Automotive Engineers, Inc. (SAE) 400 Commonwealth Drive Warrendale, PA 15096-0001 USA Phone: (724) 776-4841 Outside US & Canada: (724) 776-4970 Fax: (724) 776-0790 Website: <u>www.sae.org</u> Email: <u>CustomerService@sae.org</u>

Titanium Information Group (TIG) c/o Titanium Marketing & Advisory Services 5 Barnsway Kings Langley Herts, England WD4 9PW United Kingdom Phone: 44 (0) 1923 269 664 Fax: 44 (0) 1923 269 664 Website: www.titaniuminfogroup.co.uk

Although the International Titanium Association has made a conscientious effort to ensure the accuracy of all information contained in this book, it has not, however, verified the accuracy of the underlying source data. The International Titanium Association accepts no responsibility for either the accuracy or completeness of the information provided. Additional information may be available that may have a material effect on the intended use and interpretation of the information provided. This book should in no way be interpreted as making an industry recommendation.

International Titanium Association 2655 W. Midway Boulevard Suite 300 Broomfield, CO 80020 USA Phone: 303-404-2221 Fax: 303-404-9111 Website: www.titanium.org